Abstract

We examined the temporal variation of near-infrared (NIR) reflectance over tidal flats by proposing a tidal correction model for NIR reflectance. Sediment type, exposure time and interstitial and remnant surface waters play a key role in the optical surface reflectance of tidal flats. We established a tidal correction model for NIR reflectance by analysing 1015 scenes from the Geostationary Ocean Color Imager (GOCI), which is the first ocean colour sensor mounted on a geostationary satellite. The GOCI provides eight scenes per day with a 500-m resolution. Our results yielded two main findings. First, the reflectance model shows an asymmetric shape between ebb and flood tides. As the surface reflectance increases gradually during the ebb tide, the slope decreases steeply during the flood tide. Second, at least two models showing surface sediment are required. The tidal correction models for sand- and mixed-flats were similar; however, the one for mud-flats differed significantly. Our models work to correct for the tidal flat reflectance shown in optical images that were acquired under different tidal conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.