Abstract
Although Ti3C2Tx MXenes have attracted attention in electrochemical energy storage devices due to their excellent electronic conductivity, controllable layer structure, and huge redox active surface area, the application of Ti3C2Tx as supercapacitor (SC) electrode materials is severely limited by the ineffective chemical ion transport kinetics caused by self-restacking. In order to increase the interlayer spacing of Ti3C2Tx, the intercalation method is hailed as an effective process. Herein, polyaniline (PANI) nanorods as intercalators were synthesized by the polymerization of an aniline (ANI) monomer chemisorbed onto Ti3C2Tx wrinkled nanosheets, and the formation of a Ti3C2Tx@PANI heterostructure is conducive to the large interlayer voids. Then, the heterostructure was integrated into a three-dimensional (3D) porous cross-linked framework via a simple graphene oxide (GO)-assisted self-convergence hydrothermal strategy with low temperatures. Due to the synergistic effect among each component and 3D porous interconnected structure, the hierarchical Ti3C2Tx@PANI-reduced graphene oxide (RGO) heterostructure hydrogel possesses the advantages of excellent electrical conductivity, high specific capacitance, repressive aggregation, and large electrochemical active area. Heterostructure hydrogel electrodes (without binders) display excellent electrochemical performance with a specific capacitance as high as 301.0 F g-1 at 1 A g-1, 90.74% capacitance retention over 10 000 cycles, and a maximum energy density of 44.6 W h kg-1 at a power density of 504.7 W kg-1. Our study provides a fresh strategy for constructing a 3D Ti3C2Tx-based framework applicable to other MXenes in the design of hybrid structures for maximizing their potential applications in energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.