Abstract

The free electron laser Free electron Laser for Advanced spectroscopy and high Resolution Experiments (FLARE) at the FELIX Laboratory generates powerful radiation in the frequency range of 0.3–3 THz. This light, in combination with 33 T Bitter magnets at the High Field Magnet Laboratory, provides the unique opportunity to perform THz magneto spectroscopy with light intensities many orders of magnitude higher than provided by conventional sources. The performance of the THz spectrometer is measured via high-field electron spin resonance (ESR) in the paramagnetic benchmark system 2,2-diphenyl-1-picrylhydrazyl (DPPH). The narrow ESR linewidth of DPPH allows us to resolve a fine structure with 3 GHz spacing, demonstrating a considerable coherence of the individual THz micropulses of FLARE. The spectral resolution Δν/ν is better than 0.1%, which is an order of magnitude higher than typical values for a rf-linac based free electron laser. The observed coherence of the high power THz micropulses is a prerequisite for resonant control of matter, such as THz electron spin echo spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call