Abstract

The effects of a synthetic peptide analog of thymulin (PAT) were tested on nociceptive behavior in two animal models for peripheral mononeuropathy and in another two models for capsaicin-induced hyperalgesia. Treatment with PAT (0.25–25 μg/rat, i.p.) produced significant reduction of the mechanical allodynia and heat hyperalgesia in rats subjected to either chronic constriction injury (CCI) or spared nerve injury (SNI) models for mononeuropathy. Cold allodynia was moderately reduced in the CCI model. The inhibition of neuropathic manifestations peaked at 1–2 h post-treatment and disappeared in 3–4 h. Daily treatment with PAT, however, produced progressive attenuation of all neuropathic manifestations in the SNI model. On the other hand, pretreatment with similar doses of PAT produced dose-dependent reduction of the hyperalgesia induced by intraplantar injection of capsaicin (10 μg in 50 μl). The highest dose of PAT (50 μg) produced significant reduction of abdominal aversive behavior induced by i.p injection of capsaicin (20 μg in 100 μl). Compared with the effects of treatment with morphine or meloxicam (injected at single doses known to produce analgesia), PAT exerted equal or stronger inhibitory effects on neuropathic manifestations. The reported results suggest a possible direct action of PAT on afferent nerve fibers but its mechanisms remain to be determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call