Abstract

Plasma thrusters propel spacecraft by the application of Lorentz forces to ionized propellants. Despite evidence that Lorentz forces resulting from magnetic reconnection in solar flares and Earth's magnetopause produce jets of energetic particles, magnetic reconnection has only recently been considered as a means of accelerating plasma in a thruster. Based on theoretical principles, a pulsed magnetic reconnection thruster consisting of two parallel-connected slit coaxial tubes was constructed. The thruster was operated in argon plasma produced by RF energy at 13.56 MHz. A 1.0 ms current pulse of up to 1500 A was applied to the tubes. Three results provide evidence for magnetic reconnection. (1) The production of high-energy electrons resembling the outflow that is observed in the reconnection of field lines in solar flares and in laboratory experiments. (2) The high-energy electron current coincided with the rise of the magnetic field in the thruster and was followed by a large ion current. (3) In accordance with known physics of magnetic reconnection, ion currents were found to increase as the plasma became less collisional. The Alfvén speed of the outflowing ions was calculated to be 8.48 × 103 m s−1corresponding to anIspof 860 s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call