Abstract
The disjunctively constrained knapsack problem consists in packing a subset of pairwisely compatible items in a capacity-constrained knapsack such that the total profit of the selected items is maximized while satisfying the knapsack capacity. DCKP has numerous applications and is however computationally challenging (NP-hard). In this work, we present a threshold search based memetic algorithm for solving the DCKP that combines the memetic framework with threshold search to find high quality solutions. Extensive computational assessments on two sets of 6340 benchmark instances in the literature demonstrate that the proposed algorithm is highly competitive compared to the state-of-the-art methods. In particular, we report 24 and 354 improved best-known results (new lower bounds) for Set I (100 instances) and for Set II (6240 instances), respectively. We additionally apply the approach to solve a real-life daily photograph scheduling problem of an earth observation satellite. We analyze the key algorithmic components and shed lights on their roles for the performance of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.