Abstract

American chestnut (Castanea dentata) was transformed with a wheat oxalate oxidase (oxo) gene in an effort to degrade the oxalic acid (OA) secreted by the fungus Cryphonectria parasitica, thus decreasing its virulence. Expression of OxO was examined under two promoters: a strong constitutive promoter, CaMV 35S, and a predominantly vascular promoter, VspB. Oxo gene transcription was quantified by RT-qPCR. Relative expression of OxO varied approximately 200 fold among events produced with the 35S-OxO. The lowest 35S-OxO event expressed approximately 3,000 fold higher than the highest VspB-OxO event. This was potentially due to the tissue-specific nature of the VspB-controlled expression, the strength of the CaMV 35S constitutive promoter, or position effects. Leaf assays measuring necrotic lesion length were conducted to better understand the relationship between OxO expression level and the blight fungus in planta. A threshold response was observed between the OxO expression level and the C. parasitica lesion length. Five events of the 35S-OxO line showed significantly reduced lesion length compared to the blight-susceptible American chestnut. More importantly, the lesion length in these five events was reduced to the same level as the blight-resistant Chinese chestnut, C. mollissima. This is the first report on enhanced pathogen resistance in transgenic American chestnut.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.