Abstract

Steroid hormones play very important roles in gonadal differentiation in many vertebrate species. Previously, we have determined a threshold dosage of testosterone (T) to induce female-to-male sex reversal in Glandirana rugosa frogs. Genetic females formed a mixture of testis and ovary, the so-called ovotestis, when tadpoles of G. rugosa were reared in water containing the dosage of T, which enabled us to detect primary changes in the histology of the masculinizing gonads. In this study, we determined a threshold dosage of estradiol-17β (E2) to cause male-to-female sex reversal in this frog. We observed first signs of histological changes in the ovotestes, when tadpoles were reared in water containing the dosage of E2. Ovotestes were significantly larger than wild-type testes in size. By E2 treatment, male germ cells degenerated in the feminizing testis leading to their final disappearance. In parallel, oocytes appeared in the medulla of the ovotestis and later in the cortex as well. Quantitative polymerase chain reaction analysis revealed that the expression of sex-related genes involved in testis formation was significantly decreased in the ovotestis. In addition, immuno-positive signals of CYP17 that is involved in testis differentiation in this frog disappeared in the medulla first and then in the cortex. These results suggested that oocytes expanded in the feminizing gonad (ovary) contemporaneously with male germ cell disappearance. Primary changes in the histology of the gonads during male-to-female sex reversal occurred in the medulla and later in the cortex. This direction was opposite to that observed during female-to-male sex reversal in the G. rugosa frog.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call