Abstract

Threose nucleic acid (TNA) has been considered a potential RNA progenitor in evolution due to its chemical simplicity and base pairing property. Catalytic TNA sequences with RNA ligase activities might have facilitated the transition to the RNA world. Here we report the isolation of RNA ligase TNA enzymes by in vitro selection. The identified TNA enzyme T8-6 catalyzes the formation of a 2'-5' phosphoester bond between a 2',3'-diol and a 5'-triphosphate group, with a kobs of 1.1 × 10-2 min-1 (40 mM Mg2+, pH 9.0). For efficient reaction, T8-6 requires UA|GA at the ligation junction and tolerates variations at other substrate positions. Functional RNAs such as hammerhead ribozyme can be prepared by T8-6-catalyzed ligation, with site-specific introduction of a 2'-5' linkage. Together, this work provides experimental support for TNA as a plausible pre-RNA genetic polymer and also offers an alternative molecular tool for biotechnology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.