Abstract

Dual-fuel engines are modified compression ignition engines, where the primary source of fuel is a gaseous fuel, and ignition is provided by a ‘pilot’ injection of a reduced quantity of diesel. The generally accepted understanding of the dual-fuel engine describes its combustion process as proceeding in three stages. Initially, around half of the pilot will burn and entrain some gaseous fuel into an overall fuel-rich process. Subsequently, the remaining pilot fuel burns and entrains an increasing amount of the primary fuel into its reaction zone. In the final stage, a flame propagation process engulfs the remaining gaseous fuel. In this article, a three-zone model for the analysis of heat-release rate during the dual-fuel combustion process will be derived. This model will be tested against data obtained for diesel combustion and then applied to experimental data from a dual-fuel test program. It will be shown that there is little evidence to support the generally accepted description of the dual-fuel combustion process in a direct injection engine. The conclusion of this work is that dual-fuel combustion may be better considered as a diesel combustion process, where the gaseous fuel modifies the reaction zone surrounding each igniting droplet of the pilot fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call