Abstract

Radar emitter identification has been recognized as an indispensable task for electronic intelligence system. With the increasingly accumulated radar emitter intelligence and information, one key issue is to rebuild the radar emitter classifier efficiently with the newly-arrived information. Although existing incremental learning algorithms are superior in saving significant computational cost by incremental learning on continuously increasing training samples, they are not adaptable enough yet when emitter types, features and samples are increasing dramatically. For instance, the intra-pulse characters of emitter signals could be further extracted and thus expand the feature dimension. The same goes for the radar emitter type dimension when samples from new radar emitter types are gathered. In addition, existing incremental classifiers are still problematic in terms of computational cost, sensitivity to data input order, and difficulty in multiemitter type identification. To address the above problems, we bring forward a three-way incremental learning algorithm (TILA) for radar emitter identification which is adaptable for the increase in emitter features, types and samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.