Abstract

Corticomuscular coupling analysis based on multiple datasets such as electroencephalography (EEG) and electromyography (EMG) signals provides a useful tool for understanding human motor control systems. A popular conventional method to assess corticomuscular coupling has been the pair-wise magnitude-squared coherence (MSC) between EEG and concomitant EMG recordings. However, there are certain limitations associated with the MSC, including the difficulty in robustly assessing group inference, only dealing with two types of datasets simultaneously and the biologically implausible assumption of pair-wise interactions. To overcome such limitations, in this paper, we propose assessing corticomuscular coupling by combining multiset canonical correlation analysis (M-CCA) and joint independent component analysis (jICA). The proposed method takes advantage of the M-CCA and jICA to ensure that the extracted components are maximally correlated across multiple datasets and meanwhile statistically independent within each dataset. Simulations were performed to illustrate the performance of the proposed method. We also applied the proposed method to concurrent EEG, EMG, and behavior data collected in a Parkinson's disease (PD) study. The results reveal highly correlated temporal patterns among the three types of signals and corresponding spatial activation patterns. In addition to the expected motor areas, the corresponding spatial activation patterns demonstrate enhanced occipital connectivity in the PD subjects, consistent with previous medical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.