Abstract

The fabrication of SERS substrates, which can offer the advantages of strong Raman signal enhancement with good reproducibility and low cost, is still a challenge for practical applications. In this work, a simple three-dimensional (3D) paper-based SERS substrate, which contains plasmonic silver-nanoparticles (AgNPs), has been developed by the silver mirror reaction. This paper strip was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), etc. Pretreatment of the paper as well as the reaction time, temperature, and reagent concentrations for the silver mirror reaction were varied for further studies. With the optimized experimental parameters, the AgNPs synthesized and distributed in-situ on the paper strip could give more favorable SERS performance. The limit of detection (LOD) as low as 10−11M for Rhodamine 6G (R6G) and 10−9M for p-aminothiophenol (p-ATP) plus wide linear range for the log–log plot of Raman intensity versus analyte concentration were achieved. The detection of R6G in rain water was also carried out successfully. The merits of this protocol include low cost, easy operation, high sensitivity and acceptable stability, which make it ideal for the detection of environmental samples in trace amounts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call