Abstract
A new indirect boundary integral equation method (IBIEM) is proposed in this study to solve three-dimensional (3-D) elastic wave scattering by heterogeneities in a multi-layered half-space, employing Green’s function of distributed loads on equivalent circular elements, thus avoiding the element discretization on layer interfaces. The proposed method enables the fictitious loads to be directly distributed on the surfaces of scatterer and the weak singularity to be tackled by analytical integration. Also, the radiation condition in the semi-infinite layered medium can be satisfied accurately, and the memory requirements can also be greatly reduced, especially for a large number of layers or gradient medium. The numerical accuracy was verified through comparisons with existing results and the numerical convergence was also confirmed. The results clearly demonstrate the simplicity and effectiveness of the method, and also reveals the complicated scattering characteristics in a layered half-space that are dominated by the resonant properties of the layered medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.