Abstract

Conventional characterization methods of grinding surface using surface roughness parameters, e.g., Ra, depend on either the resolution of the measuring instrument or the length of the sample. But fractal dimension (FD) as a scale-independent fractal parameter is effective to evaluate the ground surface at any length scale and represent lots of surface phenomenon at its relevant length scales. In this paper, a three-dimensional (3D) box-counting fractal analysis method is used to investigate ground surface morphology of monocrystal sapphire by calculating 3D fractal dimension of the ground surface. The results obtained show that fractal dimension decreases with the increasing surface roughness. For the ground surface with higher fractal dimension, its microtopography is more exquisite with minor defects. Once the fractal dimension become smaller, deep cracks and pronounced defects are exhibited in ground surface. Moreover, the ground surface obtained in ductile mode has much higher fractal dimension than that in brittle mode. Therefore, the fractal analysis method has the potential to reveal the ground surface characteristics of monocrystal sapphire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.