Abstract

For testing purposes of prostheses at a preclinical stage, it is very valuable to have a generic modelling tool, which can be used to optimize implant features and to avoid poor designs being launched on to the market. The modelling tool should be fast, efficient, and multi-purpose in nature; a finite element model is well suited to the purpose. The question posed in this study was whether it was possible to develop a mathematically fast and stable dynamic finite element model of a knee joint after total knee arthroplasty that would predict data comparable with published data in terms of (a) laxities and ligament behaviour, and (b) joint kinematics. The soft tissue structures were modelled using a relatively simple, but very stable, composite model consisting of a band reinforced with fibres. Ligament recruitment and balancing was tested with laxity simulations. The tibial and patellar kinematics were simulated during flexion-extension. An implicit mathematical formulation was used. Joint kinematics, joint laxities, and ligament recruitment patterns were predicted realistically. The kinematics were very reproducible and stable during consecutive flexion-extension cycles. Hence, the model is suitable for the evaluation of prosthesis design, prosthesis alignment, ligament behaviour, and surgical parameters with respect to the biomechanical behaviour of the knee.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.