Abstract
A quasi-three-dimensional (3-D) climate model (Sellers, 1983) was used to simulate the climate of the Last Glacial Maximum (LGM) in order to provide climatic input for the modelling of the Northern Hemisphere ice sheets. The climate model is basically a coarse-gridded general circulation (GCM) with simplified dynamics, and was subject to appropriate boundary conditions for ice-sheet elevation, atmospheric CO2concentration and orbital parameters. When compared with the present-daysimulation, the simulated climate at the Last Glacial Maximum is characterized by a global annual cooling of 3.5°C and a reduction in global annualprecipitation of 7.5%, which agrees well with results from other, more complex GCMs. Also the patterns of temperature change compare fairly with mostother GCM results, except for a smaller cooling over the North Atlantic and the larger cooling predicted for the summer rather than for the winter over Eurasia.The climate model is able to simulate changes in Northern Hemisphere tropospheric circulation, yielding enhanced westerlies in the vicinity of the Laurentide and Eurasian ice sheets. However, the simulated precipitation patterns are less convincing, and show a distinct mean precipitation increase over the Laurentide ice sheet. Nevertheless, when using the mean-monthly fields of LGM minus present-day anomalies of temperature and precipitation rate to drive a three-dimensional thermomechanical ice-sheet model, it was demonstrated that within realistic bounds of the ice-flow and mass-balance parameters, veryreasonable reconstructions of the Last Glacial Maximum ice sheets could be obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.