Abstract

External scattering from a finite phononic crystal (PC) is studied using the Helmholtz-Kirchhoff integral theorem integrated with a Bloch wave expansion (BWE). The BWE technique is used to describe the internal pressure field of a semi-infinite or layered PC subject to an incident monochromatic plane wave. Following the BWE solution, the Helmholtz-Kirchhoff integral is used to determine the external scattered field. For cubic PCs, the scattered results are compared to numerical treatments in both the frequency and time domain. The presented approach is expected to be valid when the PC size is larger than the acoustic wavelength. However, very good agreement in the spatial beam pattern is also documented for both large and small (with respect to the wavelength) PCs. The result of this work is a fully-analytical, efficient, and verified approach for accurately predicting external scattering from finite, three-dimensional PCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.