Abstract

A three-component model based on mass transfer equation is proposed to simulate both the natural and ventilated cavitations. In the present cavitation model, the content of nuclei in the local flow field is updated synchronously, and is coupled with the Rayleigh–Plesset equation so as to capture the cavity development. The proposed model is applied for simulating the cavitating flow around a super-cavitating vehicle in different cavitation conditions. In the case of the natural cavitation simulation, the predicted cavitation characteristics including the cavity length and cavity diameter agrees fairly well with the analytical results. In the case of the mixed cavitation simulation, the gas ventilation obviously influences the development of cavity. With the increase of the gas ventilated rate, the natural cavitation is suppressed remarkably, and a super cavitation is formed even at a relatively larger natural cavitation number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call