Abstract

In this article, an interleaved high-voltage gain dc–dc converter is proposed for use with photovoltaic (PV) systems. By integrating two three-winding coupled inductors (CIs) with switched capacitor cells, the voltage gain is further extended. Through passive diode-capacitor clamp circuits, the energy stored in the leakage inductances is absorbed; additionally, the voltage stress of the power switches is clamped to a value far lower than the output voltage, which enables designers to select switches with low-voltage ratings. Due to the interleaved structure of the proposed converter, the input current has a small ripple, which leads to the increased lifespan of the PV panels. In addition, the current stress on the components is reduced. Thanks to the leakage inductances of the CIs, the zero-current switching condition is intrinsically provided for the diodes; accordingly, the adverse impact of the diodes’ reverse-recovery is alleviated. The operating principles, steady-state analyses, and design considerations of the proposed converter are presented in this article. A comparison with other similar converters is carried out to verify the merits of the proposed converter. Finally, the theoretical analyses are confirmed through the experimental results of a 400-W prototype with an output voltage of 400 V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.