Abstract
In recent years, severe outages caused by natural disasters such as hurricanes have highlighted the importance of boosting the resilience level of distribution systems. However, due to the uncertain characteristics of natural disasters and loads, there exists a research gap in the selection of optimal planning strategies coupled with provisional microgrid (MG) formation. For this purpose, this study proposes a novel three-stage stochastic planning model considering the planning step and emergency response step. In the first stage, the decisions on line hardening and Distributed Generation (DG) placement are made with the aim of maximising the distribution system resilience. Then, in the second stage, the line outage uncertainty is imposed via the given scenarios to form the provisional MGs based on a master-slave control technique. In addition, the non-anticipativity constraints are presented to guarantee that the MG formation decision is based on the line damage uncertainty. Last, with the realisation of the load demand, the cost of load shedding in each provisional MG is minimised based on a demand-side management program. The proposed method can consider the step-by-step uncertainty realisation that is near to the reality in MG formation strategy. Two standard distribution systems are utilised to validate the correctness and effectiveness of the presented model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.