Abstract
As one of the most significant part of carbon neutralisation, the rapid growth of electric vehicle (EV) market in past few years has greatly expedited the transport electrification, which, however, has brought in new challenges to power system including isolated distribution network for commercial and industrial set up. Stochastic and complex EV behaviours would violate network permissible operation region and increase costs for system operators. To address these problems, a chance-constrained smart EV charging strategy in a DC microgrid (DCMG) supporting large office complex is proposed to minimize system cost from distribution network and fleet battery degradation cost from EVs providing ancillary service to the DCMG. When dealing with uncertainties from EVs, a Markov Chain Monte Carlo (MCMC) model is built to couple different parameters in load profiles and characterize the time series of likelihood of charging and discharging. A state-of-charge (SOC) space random walk method is then proposed to solve the resultant massive recursive probabilistic charging requirements. Based on that, a three-stage optimization framework is established to illustrate the work flow in system level. Numerical results verifying the effectiveness of the proposed method are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.