Abstract

In this paper the effects of accidental impacts on polysilicon MEMS sensors are investigated within the framework of a three-scale finite element approach. By allowing for the very small ratio (on the order of 10−4) between the inertia of the MEMS and the inertia of the whole device, macro-scale analyses at the package length-scale are run to obtain the loading conditions at the sensor anchor points. These loading conditions are successively adopted in meso-scale analyses at the MEMS length-scale to detect where the stress level tends to be amplified by sensor layout. To foresee failure of polysilicon in these domains, as caused by the propagation of inter- as well as trans-granular cracks up to percolation, representative crystal topologies are handled in micro-scale analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call