Abstract

This paper proposes a down-sampled discrete-time internal-model-based controller in the synchronous reference frame with a reduced number of poles. This controller is suitable for three-phase pulsewidth modulation inverters with output transformer for double-conversion uninterruptible power supply applications. It is demonstrated that the use of a down-sampled rate and fewer poles in the internal model results in a number of benefits, among which are the following: 1) improvement of the transient response; 2) increase of the stability margin of the closed-loop system; 3) a straightforward implementation in fixed-point digital signal processor (DSP) and microcontroller implementation as well as a reduction of the required memory space; and 4) a simple solution for the saturation of the output transformer. As a result, it is possible to obtain output voltages with reduced total harmonic distortion while ensuring good transient performance for both linear and nonlinear loads. To confirm the advantages claimed for the proposed synchronous reference dq frame internal-model-based controller and to demonstrate the steady-state and transient performance under the test conditions of the International electrotechnical commission standard 62040-3, the experimental results from a 10-kVA space-vector-modulated three-phase inverter, which is fully controlled by a DSP TMS320F241, are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call