Abstract

A computational model for the prediction of porosity due to dissolved hydrogen in binary aluminum-silicon alloys has been developed. The model combines the cellular automata technique for the simulation of the growth of the solid phase, the finite-difference technique for the simulation of diffusion of the dissolved species, and a quasi-equilibrium model for the growth of individual bubbles. The growth of the solid and gas phases is initiated by a stochastic nucleation model, depending upon the undercooling (for the solid) or the supersaturation ratio (for the gas). The results agree favorably with experiments. The low supersaturation values needed to simulate the experimental results are consistent with a nucleation mechanism of gas pockets entrained within the melt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.