Abstract
We construct a three-parameter deformation of the Hopf algebra LDIAG. This is the algebra that appears in an expansion in terms of Feynman-like diagrams of the product formula in a simplified version of quantum field theory. This new algebra is a true Hopf deformation which reduces to LDIAG for some parameter values and to the algebra of matrix quasi-symmetric functions (MQSym) for others, and thus relates LDIAG to other Hopf algebras of contemporary physics. Moreover, there is an onto linear mapping preserving products from our algebra to the algebra of Euler–Zagier sums.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.