Abstract

A three-level boost converter enables efficient voltage step-up power conversion with high power density by reducing the inductance and blocking voltage requirements in a conventional boost converter. An auto-capacitor-compensation pulse frequency modulation (ACC-PFM) controller, combining peak and valley current-mode controls, is proposed to resolve the issue of unbalanced flying capacitor voltage, as well as to regulate the output voltage. The capacitor balance is further strengthened through a delay-equalized level shifter that generates duty ratios with only sub-nanosecond deviations. The step-up power conversion from the input voltage of 0.3-3.0 V to the output voltage of 2.4-5.0 V is demonstrated through a prototype converter implemented in a 65-nm CMOS process with 0.28 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> active area. This converter achieves 96.8% peak efficiency and an 83-mA peak output current, with an 8$\times $ peak step-up conversion ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.