Abstract

Reliable preoperative diagnosis of malignant thyroid tumors remains challenging because of the inconclusive cytological examination of fine-needle aspiration biopsies. Although numerous studies have successfully demonstrated the use of high-throughput molecular diagnostics in cancer prediction, the application of microarrays in routine clinical use remains limited. Our aim was, therefore, to identify a small subset of genes to develop a practical and inexpensive diagnostic tool for clinical use. We developed a two-step feature selection method composed of a linear models for microarray data (LIMMA) linear model and an iterative Bayesian model averaging model to identify a suitable gene set signature. Using one public dataset for training, we discovered a three-gene signature dipeptidyl-peptidase 4 (DPP4), secretogranin V (SCG5) and carbonic anhydrase XII (CA12). We then evaluated the robustness of our gene set using three other independent public datasets. The gene signature accuracy was 85.7, 78.8 and 85.7%, respectively. For experimental validation, we collected 70 thyroid samples from surgery and our three-gene signature method achieved an accuracy of 94.3% by quantitative polymerase chain reaction (QPCR) experiment. Furthermore, immunohistochemistry in 29 samples showed proteins expressed by these three genes are also differentially expressed in thyroid samples. Our protocol discovered a robust three-gene signature that can distinguish benign from malignant thyroid tumors, which will have daily clinical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.