Abstract

The horizontal and depth distribution of plutonium was measured in soil east of the Rocky Flats Environmental Technology Site (formerly the Rocky Flats Plant) near Denver, Colorado, during 1992-1994. The study area was centered on the eastern plume of plutonium contamination and included transects extending from 0.2 km east of the primary origin of the contamination (the 903 Pad) to distances of up to 19 km northeast, east, southeast and south-southeast of the 903 Pad. Soil was collected in 3 cm layers down to 21 cm at exponentially increasing distances along the four transects. Plutonium concentrations decreased rapidly with depth, distance from the 903 Pad, and angle from due east. Depth distributions were independent of distance and angle from the 903 Pad, and our profile model can be used to adjust to a common basis, historical measurements made from sampling to different depths. Based on a total of approximately 1,400 independent measurements, mathematical functions were developed to describe the distance, directional, and depth relationships. These equations, combined with soil density and rock measurements, provided a new method to estimate the plutonium concentration or total deposition per unit area anywhere within the study area. Total deposition per unit area measurements at 50 sites provided an independent test of the model's predictive accuracy. Sampling coefficients of variation based on replicate samples at the main sampling locations averaged 33%, but ranged from 12 to 98%. The analytical measurement coefficient of variation averaged 8%. Mean 0-3 cm soil concentrations of (239,240)Pu among 10 Front Range "background" and 11 community locations near Rocky Flats were 2.1 and 2.3 Bq kg(-1), respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call