Abstract

A three-dimensional (3-D) sharp interface model is developed to simulate the solutal dendritic growth in the low Péclet number regime. The model adopts a previously proposed solutal equilibrium approach to calculate the evolution of the solid/liquid interface. To describe specific crystallographic orientations of 3-D dendritic growth, a weighted mean curvature algorithm incorporated with the anisotropy of surface energy is proposed, allowing the simulation of 3-D dendrites with various orientations in a straightforward manner. The model validation is performed by comparing the simulations with the analytical predictions and experimental data for both single and multi-dendritic growth, which demonstrates the quantitative capabilities of the proposed model. The model efficiently reproduces realistic 3-D multi-equiaxed and columnar dendrites with various orientations and well-developed side branches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.