Abstract
We demonstrate a fast and easy-to-use three-dimensional printed microfluidic platform for mitochondria isolation from cell and tissue lysates based on inertial microfluidics. We present and quantify the quality of the isolated mitochondria by measuring the respiration rate under various conditions. We demonstrate that the technology produces vital mitochondria of equal quality to traditional, but more burdensome, differential centrifugation. We anticipate that the availability of improved tools for studies of bioenergetics to the broader biological community will enable these and other links to be explored in more meaningful ways, leading to further understanding of the links between energy, health, and disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.