Abstract

CFD is becoming an important heat exchanger research technique. It constitutes an inexpensive prediction method, avoiding the need of testing numerous prototypes. Current work in this field is mostly based on air flow models assuming constant temperature of fin-and-tube surface. The purpose of this paper is to present an enhanced model, whose innovation lies in considering additionally the water flow in the tubes and the conduction heat transfer through the fin and tubes, to demonstrate that the neglect of these two phenomena causes a simulation result accuracy reduction. 3-D Numerical simulations were accomplished to compare both an air side and an air/water side model. The influence of Reynolds number, fin pitch, tube diameter, fin length and fin thickness was studied. The exchanger performance was evaluated through two non-dimensional parameters: the air side Nusselt number and a friction factor. It was found that the influence of the five parameters over the mechanical and thermal efficiencies can be well reported using these non-dimensional coefficients. The results from the improved model showed more real temperature contours, with regard to those of the simplified model. Therefore, a higher accuracy of the heat transfer was achieved, yielding better predictions on the exchanger performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.