Abstract
The operation of a laminar flow fuel cell (LFFC) involves complex interplay between various mass and electrochemical transport processes. Hence, to better design and more accurately predict performance, we developed a fully-coupled 3D numerical model that includes all the transport processes and electrochemical phenomena. Specifically, the model is based on the equations for the mass, momentum, species, and charge balances along with Butler–Volmer equations for electrode kinetics. The developed model was in excellent agreement with experimental data on a micro laminar flow fuel cell (μLFFC) with a bridge-shaped microchannel cross-section. Then, we used the model for a parametric study evaluating the influence of different operational and geometrical parameters (bridge aspect ratio, reactant flow rates, oxidant concentration) on the fuel cell performance (peak power density, fuel crossover, crossover current, power losses). The observed correlations were explained on the basis of mass and electrochemical transport phenomena, e.g., the behavior of the depletion zones at the fuel–oxidant and reactant–electrode interfaces. Based on these results, we recommend further design considerations for LFFCs. Although, the model was specifically developed for a particular μLFFC configuration, the computational model can be used to design and predict behavior of a wide variety of LFFC configurations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.