Abstract

A stationary, isothermal, three-dimensional model for negative half cell of the vanadium redox flow battery is developed, which is based on the comprehensive conservation laws, such as charge, mass and momentum, together with a kinetic model for reaction involving vanadium species. The model is validated against the results calculated by the available two-dimensional model. With the given geometry of the negative half cell, the distributions of velocity, concentration, overpotential and transfer current density in the sections that are perpendicular and parallel to the applied current are studied. It is shown that the distribution of the electrolyte velocity in the electrode has significant impact on the distribution of concentration, overpotential and transfer current density. The lower velocity in the electrode will cause the higher overpotential, further result in the side reaction and corrosion of key materials locally. The development of the design of the vanadium redox flow battery is discussed, and the further research is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call