Abstract

Interaction of impulsively generated MHD waves with a one-dimensional plasma inhomogeneity, transverse to the magnetic field, is considered in the three-dimensional regime. Because of the transverse inhomogeneity, MHD fluctuations, even if they do not include initially any density perturbation, evolve toward states where the compressible components tend to become predominant. The propagating MHD pulse asymptotically reaches a quasi-steady state with the final levels of density perturbation weakly depending on the degree of non-planeness of the pulse in the homogeneous transverse direction and somewhat stronger depending on plasma β. Our study demonstrates the necessity of incorporation of compressible and 3D effects in theory of Alfvén wave phase mixing. However, as far as the dynamics of weakly non-plane Alfvén waves is concerned it can still be qualitatively understood in terms of the previous 2.5D models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.