Abstract

A three-dimensional inverse analysis utilizes a different perspective to estimate the surface thermal behavior of the working roll in rolling process. The inverse analysis is based on the temperature reading taken inside the roll at several different locations. At the beginning of the study, finite-difference methods are employed to discretize the problem domain and then a linear inverse model is constructed to identify the boundary conditions. The present approach is to rearrange the matrix forms of the differential governing equations and estimate the surface unknown conditions of the working roll. Then, the linear least-squares method is adopted to find the solution. The advantages of this proposed inverse analysis method are that no prior information is needed regarding the functional form of the unknown quantities, no initial guess need be used and the numbers of iterations for calculation process is limited to one. The results show that only few measuring points are sufficient to estimate the boundary conditions when measurement errors are neglected. When measurement errors are considered, more measuring points are needed in order to increase the congruence of the estimated results to exact solutions. [S1087-1357(00)70201-2]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.