Abstract

A three-dimensional general circulation model has been developed to investigate mixing processes in Lake Baikal, Siberia. Emphasis is placed on the 4–5-month period when the lake is completely ice-covered, a time of particular importance to the re-population of the lake by diatoms. The model represents the top 250 m and includes a new mixing scheme developed specifically for the investigation of under-ice flows. The effects of spatial patterns of snow and ice transparency on circulation and temperature are investigated. In general, temperature profiles provide an indication of the extent and depth of mixing and are highly sensitive to the presence of snow and to the transparency of ice. Generated profiles agree well with in situ measurements, which are difficult to obtain during this period. The model is shown to be particularly successful in simulating mixing processes in Lake Baikal. The surface heat fluxes that are required for a model of this type were estimated using satellite data, which provide complete coverage of the lake within one image. An increase in albedo values of 20% has no significant impact on the development of the temperature profile. Finally, density driven currents generated in the model were investigated. The magnitudes of the model currents compared to observations suggest that the background flow under ice in the lake may be density driven.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call