Abstract

An ideal microchip for single-cell experiments should be able to allow us to culture cells, to select any desired single cell from a group, to retain the cell for convenient cellular signal detection, and to deliver any buffer or reagent directly to the cell at any time during continual detection and observation. Most importantly, any negative impact on the live cell should be minimized. To accomplish all these functions, we developed a three-dimensional liquid flow control concept and employed special liquid flow fields to manipulate and retain a single yeast cell freely in the chip. A zero-speed point was controlled to retain the cell for three-dimensional cell balancing and cell scanning. A dispersive flow delivered reagents at a high speed to very near the cell and provided them to the cell at a low speed. No force stronger than its gravitational force was exerted on the cell, which could be balanced on different positions on an arc-sloping wall, thus minimizing any negative impact on the cell due to strong liquid flows. Specifically, we demonstrate on-chip single-cell culture, cell wall removal, and reagent delivery. Subsequently, single-cell fluorescence detection was performed, and noise filtering and background correction were applied for data processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.