Abstract

A numerical solution is presented for both the transient temperature and three-dimensional stress distribution in a railcar wheel resulting from a simulated emergency brake application. A computer program has been written for generating thermoelastic solutions applicable to wheels of arbitrary contour with temperature variations in both axial and radial directions. The results include the effect of shear stresses caused by the axial-radial temperature gradients and the high degree of boundary irregularity associated with this type of problem. The program has been validated by computing thermoelastic solutions for thin disks and long cylinders; the computed values being in good agreement with the closed form solutions. Currently, the computer program is being extended to general stress solutions corresponding to the transient temperature distributions obtained by simulated drag brake applications. When this work is completed, it will be possible to synthesize the thermal history of a railcar wheel and investigate the effects of wheel geometry in relation to thermal fatigue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call