Abstract
We present a field formulation for defects that draws from the classical representation of the cores as force dipoles. We write these dipoles as singular distributions. Exploiting the key insight that the variational setting is the only appropriate one for the theory of distributions, we arrive at universally applicable weak forms for defects in nonlinear elasticity. Remarkably, the standard, Galerkin finite element method yields numerical solutions for the elastic fields of defects that, when parameterized suitably, match very well with classical, linearized elasticity solutions. The true potential of our approach, however, lies in its easy extension to generate solutions to elastic fields of defects in the regime of nonlinear elasticity, and even more notably for Toupin's theory of gradient elasticity at finite strains (Toupin Arch. Ration. Mech. Anal., 11 (1962) 385). In computing these solutions we adopt recent numerical work on an isogeometric analytic framework that enabled the first three-dimensional solutions to general boundary value problems of Toupin's theory (Rudraraju et al. Comput. Methods Appl. Mech. Eng., 278 (2014) 705). We first present exhaustive solutions to point defects, edge and screw dislocations, and a study on the energetics of interacting dislocations. Then, to demonstrate the generality and potential of our treatment, we apply it to other complex dislocation configurations, including loops and low-angle grain boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.