Abstract
A small strain, three-dimensional, elastic and elastoplastic Element-Free Galerkin (EFG) formulation is developed. Singular weight functions are utilized in the Moving-Least-Squares (MLS) determination of shape functions and shape function derivatives allowing accurate, direct nodal imposition of essential boundary conditions. A variable domain of influence EFG method is introduced leading to increased efficiency in computing the MLS shape functions and their derivatives. The elastoplastic formulations are based on the consistent tangent operator approach and closely follow the incremental formulations for non-linear analysis using finite elements. Several linear elastic and small strain elastoplastic numerical examples are presented to verify the accuracy of the numerical formulations. Copyright © 1999 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.