Abstract

A three-dimensional (3-D) Discrete Fourier Transform (DFT) algorithm for real data using the one-dimensional Fast Hartley Transform (FHT) is introduced. It requires the same number of one-dimensional transforms as a direct FFT approach but is simpler and retains the speed advantage that is characteristic of the Hartley approach. The method utilizes a decomposition of the cas function kernel of the Hartley transform to obtain a temporary transform, which is then corrected by some additions to yield the 3-D DFT. A Fortran subroutine is available on request.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.