Abstract

Adequate epidural procedures and anatomical knowledge are essential for the technical success of skull base surgery. We evaluated the usefulness of our three-dimensional (3D) model of the anterior and middle cranial fossa as a learning tool in improving knowledge of anatomy and surgical approaches, including skull base drilling and dura matter peeling techniques. Using a 3D printer, a bone model of the anterior and middle cranial fossa was created based on multi-detector row computed tomography data, incorporating artificial cranial nerves, blood vessels, and dura mater. The artificial dura mater was painted using different colors, with 2 pieces glued together to allow for the simulation of peeling the temporal dura propria from the lateral wall of the cavernous sinus. Two experts in skull base surgery and 1 trainee surgeon operated on this model and 12 expert skull base surgeons watched the operation video to evaluate this model subtlety on a scale of 1 to5. A total of 15 neurosurgeons, 14 of whom were skull base surgery expert, evaluated, scoring 4 or higher on most of the items. The experience of dural dissection and 3D positioning of important structures, including cranial nerves and blood vessels, was similar to that in actual surgery. This model was designed to facilitate teaching anatomical knowledge and essential epidural procedure-related skills. It was shown to be useful for teaching essential elements of skull-base surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call