Abstract

The Urban Wastewater Treatment Directive recent draft issued last October 2022 pays attention to contaminants of emerging concern including organic micropollutants (OMPs) and requires the removal of some of them at large urban wastewater treatment plants (WWTPs) calling for their upgrading. Many investigations to date have reported the occurrence of a vast group of OMPs in the influent and many technologies have been tested for their removal at a lab- or pilot-scale. Moreover, it is well-known that hospital wastewater (HWW) contains specific OMPs at high concentration and therefore its management and treatment deserves attention. In this study, a 1-year investigation was carried out at a full-scale membrane bioreactor (MBR) treating mainly HWW. To promote the removal of OMPs, powdered activated carbon (PAC) was added to the bioreactor at 0.1 g/L and 0.2 g/L which resulted in the MBR operating as a hybrid MBR. Its performance was tested for 232 target and 90 non-target OMPs, analyzed by UHPLC-QTOF-MS using a direct injection method. A new methodology was defined to select the key compounds in order to evaluate the performance of the treatments. It was based on their frequency, occurrence, persistence to removal, bioaccumulation and toxicity. Finally, an environmental risk assessment of the OMP residues was conducted by means of the risk quotient approach. The results indicate that PAC addition increased the removal of most of the key OMPs (e.g., sulfamethoxazole, diclofenac, lidocaine) and OMP classes (e.g., antibiotics, psychiatric drugs and stimulants) with the highest loads in the WWTP influent. The hybrid MBR also reduced the risk in the receiving water as the PAC dosage increased mainly for spiramycin, lorazepam, oleandomycin. Finally, uncertainties and issues related to the investigation being carried out at full-scale under real conditions are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.