Abstract

Thixotropic materials, which become less viscous under stress and return to their original state when stress is removed, have been used to deliver gel-cell constructs and therapeutic agents. Here we show that a polymer-silica nanocomposite thixotropic gel can be used as a three-dimensional cell culture material. The gel liquefies when vortexed--allowing cells and biological components to be added--and resolidifies to trap the components when the shear force from spinning is removed. Good permeability of nutrients and gases through the gel allows various cell types to proliferate and be viable for up to three weeks. Human mesenchymal stem cells cultured in stiffer gels developed bone-like behaviour, showing that the rheological properties of the gel can control cell differentiation. No enzymatic, chemical, or photo-crosslinking, changes in ionic strength or temperature are required to form or liquefy the gel, offering a way to sub-culture cells without using trypsin-a protease commonly used in traditional cell culture techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.