Abstract
We construct a new third-order semi-discrete genuinely multidimensional central scheme for systems of conservation laws and related convection-diffusion equations. This construction is based on a multidimensional extension of the idea, introduced in [17] – the use of more precise information about the local speeds of propagation, and integration over nonuniform control volumes, which contain Riemann fans. As in the one-dimensional case, the small numerical dissipation, which is independent of ${\cal O}(\frac{1}{\Delta t})$ , allows us to pass to a limit as $\Delta t \downarrow 0$ . This results in a particularly simple genuinely multidimensional semi-discrete scheme. The high resolution of the proposed scheme is ensured by the new two-dimensional piecewise quadratic non-oscillatory reconstruction. First, we introduce a less dissipative modification of the reconstruction, proposed in [29]. Then, we generalize it for the computation of the two-dimensional numerical fluxes. Our scheme enjoys the main advantage of the Godunov-type central schemes –simplicity, namely it does not employ Riemann solvers and characteristic decomposition. This makes it a universal method, which can be easily implemented to a wide variety of problems. In this paper, the developed scheme is applied to the Euler equations of gas dynamics, a convection-diffusion equation with strongly degenerate diffusion, the incompressible Euler and Navier-Stokes equations. These numerical experiments demonstrate the desired accuracy and high resolution of our scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.