Abstract
SummaryA space and time third‐order discontinuous Galerkin method based on a Hermite weighted essentially non‐oscillatory reconstruction is presented for the unsteady compressible Euler and Navier–Stokes equations. At each time step, a lower‐upper symmetric Gauss–Seidel preconditioned generalized minimal residual solver is used to solve the systems of linear equations arising from an explicit first stage, single diagonal coefficient, diagonally implicit Runge–Kutta time integration scheme. The performance of the developed method is assessed through a variety of unsteady flow problems. Numerical results indicate that this method is able to deliver the designed third‐order accuracy of convergence in both space and time, while requiring remarkably less storage than the standard third‐order discontinous Galerkin methods, and less computing time than the lower‐order discontinous Galerkin methods to achieve the same level of temporal accuracy for computing unsteady flow problems. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.