Abstract
Iron nitrides are key intermediates in biological nitrogen fixation and the industrial Haber-Bosch process, used to form ammonia from dinitrogen. However, the proposed successive conversion of nitride to ammonia remains elusive. In this regard, the search for well-described multi-iron nitrido model complexes and investigations on controlling their reactivity towards ammonia formation have long been of great challenge and importance. Here we report a well-defined thiolate-bridged FeIVFeIV μ-nitrido complex featuring an uncommon bent Fe-N-Fe moiety. Remarkably, this complex shows excellent reactivity toward hydrogenation with H2 at ambient conditions, forming ammonia in high yield. Combined experimental and computational studies demonstrate that a thiolate-bridged FeIIIFeIII μ-amido complex is a key intermediate, which is generated through an unusual two-electron oxidation of H2. Moreover, ammonia production was also realized by treating this diiron μ-nitride with electrons and water as a proton source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.