Abstract
The paper concerns assessment of the durability of a thin-walled elastic pipe subjected to uniform corrosion under internal and/or external pressures of different media with generally different temperatures. Stress-assisted corrosion of thin-walled pipes under pressure was earlier studied by other authors. Being based on the Laplace law, their solutions do not reflect the effect of internal and external pressure values themselves but only the pressure difference. However, as it is known, hydrostatic pressure may affect the corrosion rate. Unlike the solutions based on the Laplace law, we present a solution taking into account the effects of both internal and external pressures (not only their difference), a difference in the elastic stresses through the pipe wall thickness, and thermal stresses. In accordance with available experimental data, the rate of corrosion is supposed to be linearly dependent on the maximal principal stress at the corresponding surface and exponentially dependent on the temperature. Being presented in a closed form, the obtained solution can serve as a benchmark for numerical analysis and for design purposes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.