Abstract

A new non-traditional organic hole-transporting material (HTM), 4-(4-phenyl-4-α-naphthylbutadienyl)-N,N-bis(4-benzyl)-aniline (PNBA), has been employed in CH3NH3PbI3 perovskite solar cells for the first time. The pore filling of PNBA into mesoporous TiO2/CH3NH3PbI3 scaffold is investigated in detail. As high as 11.4% of light-to-electricity conversion efficiency has been achieved, comparable to corresponding spiro-OMeTAD-based devices under the same conditions. It is revealed that the uniform and thin PNBA film is sufficient as a HTM for perovskite solar cells, and can facilitate hole transport to the metal cathode and also block electron transfer from the perovskite to the metal cathode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call